

Introduction

🔅 LP360

Usage in LiDAR applications

In LiDAR applications, GCPs are used for 2 reasons:

- **Determination of the accuracy**: this is performed by comparing the LiDAR point cloud and targets with known coordinates.
- **Global alignment of point cloud**: to improve the precision and the accuracy of the point cloud.

Notes:

- The precision is improved as the misalignment between lines are reduced.
- · Accuracy is improved as the misalignment between the point cloud and GCPs is reduced.

\delta LP360


In comparing the Computed GCT Center and the coordinates of the GCP we can assess the deviation from the local point cloud to the GCP at the GCP location: Thus, we can compute the LiDAR point cloud accuracy.

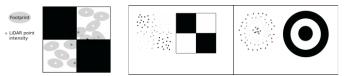
GCP

- Monumented point for which geodesic coordinates are known with a controlled accuracy and precision.
- (may be provided by National Geodetic Authority or made by the user.)

GCT

· Device that defines a unique center

2D Ground Control Target types

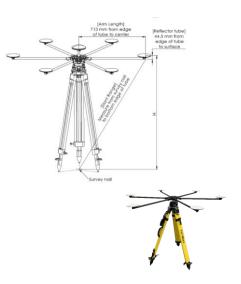

•)

Classic targets:

- CheckerBoard
- Concentric circle

Limitations:

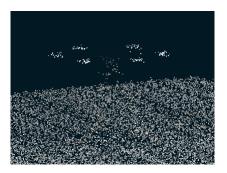
- the estimation of the center is **dependent of the sampling of low and high intensity** (B&W) points over the target.
- Given the X,Y estimates of the center, the Z value should be estimated by a spatial interpolation in a neighborhood of the estimated center.

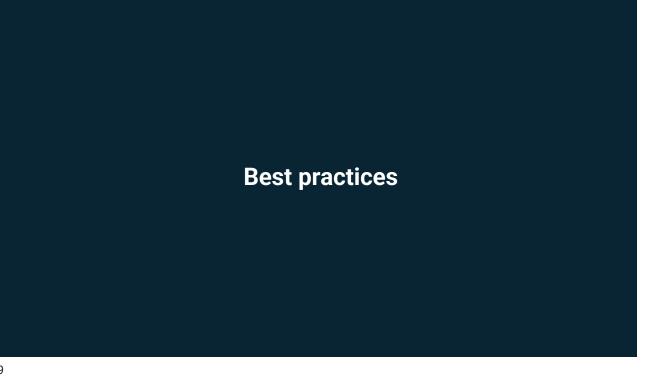

3D GCT (Accuracy Star)

Specs

- Arm length 70cm;
- Reflector diameter 14cm;
- Recommended installation height: at least 1,40m

Installation with GCP


- In placing a GNSS antenna at the center we can make an estimation of the 3D center. This point will play the role of reference coordinates of the GCP.
- Install the Accuracy Star over a survey nail or a monumented GCP by levelling the tripod. The vertical separation between the survey nail and a reference height of the Accuracy Star should be measured accurately (H Offset).



🍣 **LP**360

Advantages of Accuracy Star

- It is accurate since the hexagon geometry enables us to estimate the center from 3 to 6 clusters of points representing the reflectors. Redundancy in the hexagon observation makes the center estimate to be precise and robust.
 - The size and the separation of the reflectors has been optimized to enable a good detection for most UAV LiDAR flight configuration.
- It is **unbiased** since the redundancy of the six reflectors enables us to estimate the center in a robust way.
- The Z component comes from the <u>vertical separation from the</u> <u>ground of the reflectors</u>. It is important to install the Accuracy star at the highest possible elevation from the ground.

9

🔅 LP360

How many GCTs should I use?

It is recommended to deploy at least 3 GCTs to enable a possible rotation-translation transformation

Number of AS	1	2	3+
Translation	Yes	Yes	Yes
Rotation + Translation	No	No	Yes

1 GCT allows validation of the point cloud Accuracy and confirms that the dataset doesn't have major issues. The point cloud cannot be corrected (other than locally) but can be validated that it is within the expected accuracy range of the system

Notes

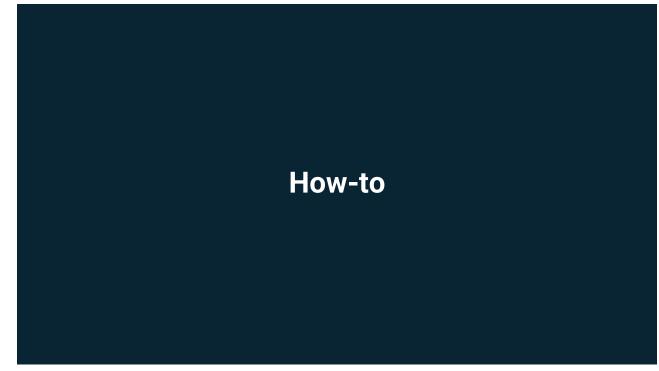
🔷 LP360

Where shoud I install my GCTs

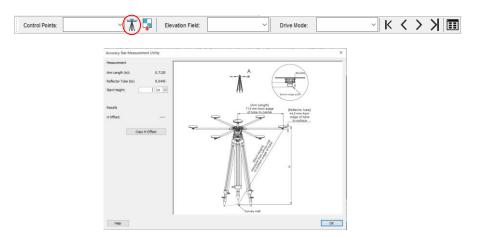
- We recommend installing GCTs at locations where positioning uncertainty is higher, in order to have a conservative estimate of accuracy.
 - Example: for a long corridor survey, GCTs should be installed at the beginning and at the end of the corridor, to measure the effect of IMU heading bias along the corridor, especially if the UAV is flying at low speed.
- Accuracy can be assessed in
 - overlapping areas (intersections between lines)
 - non overlapping area (single line),
 - line by line.

- Discrepancy between different lines can give relevant information on the survey local accuracy and may help the user to understand some sources of errors that may depend on the lines
- If you have multiple flights in an area performed on the same day, you should use the same GCTs for all flights

🔅 LP360


Local versus global accuracy of the survey

- If interested in the global accuracy, accuracy assessment and accuracy enhancement should be performed with some AS distributed over the survey area.
- If interested only in local accuracy, the AS should be placed on the location of interest.


Specific to Accuracy Stars

- For Accuracy Stars, the accuracy assessment is **independent of the nature of the underlying terrain**: An Accuracy Star over a flat/gentle slope area or wet/dry or high/low reflectance will give the same information; It is given by its own reflectors and not by the terrain.
- For Accuracy Stars, the accuracy assessment only depends on the flight conditions:
 - Height, Speed -> parameters affecting point density
 - Motion (long constant heading at low speed, angular rates, etc...)

🔅 LP360

Measure Accuracy Stars in the field

15

\delta LP360

Processing workflow

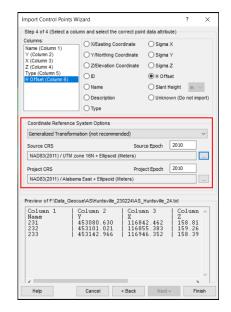
- 1. Import GCP
- 2. Auto Find
- 3. Solve
- 4. Apply Correction
- 5. Verification

Example

Payload: TV516 Flight Height: 75m Flight Speed : 5 m/s

Step 1. Import Ground Control Points (from txt)

🔅 LP360

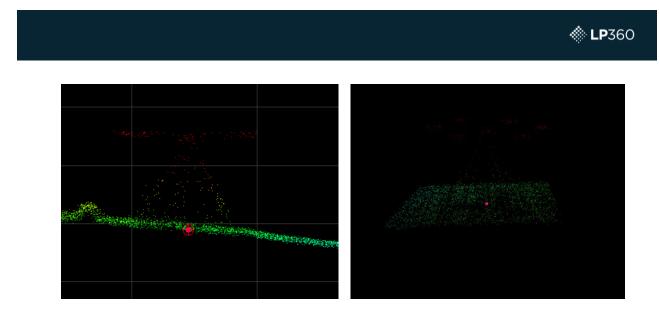

nport Control Points Wizard 7 ×	Import Control Points Wizard 7 ×	Import Control Points Wizard ?
Day 14 4 Coupt Frank C LAS Files Daysettes assights one or more tend files with considered formating properties (ir p., tenders, files, eds., Size22448_hutervie_3438 Add Renormal	Step 3 of 4 Select the destinants that the selected fact filters contain. Tab Comma Space Semicotion Other	Steps et ref (Secker a clumm and select the correct prote data diffuely Catures Interne (Catures 1) V (Catures 2) V (Catures 2)
elect a faider to write Shape files to: I: Data_Gencue/ASHurtsville_230224AS_thettsville_230224AS_thet I: Data_Gencue/ASHurtsville_230224AS_thettsville_230224AS_thet		Ne Convesso (Transformation Source OS Source OS Neglec OS Neglec OS Neglec ToS Neglec To Negle
review of E1Data. GeocuelASIHuntsville. 230224IAS. Huntsville. 24.bxt	Preview of E-Data. GeocuelASWuntsville. 230224/AS. Huntsville. 24 bt	Preview of F-Data. GeocuelASHuntsville. 230224\AS_Huntsville. 24.txt
231,453060 630,116842.462,158.811.as.1.1288 232,453101.021.116855.383,159.862.as.1.0607 233,453142.966,116946.352.150.396.as.1.0607	231 453080.530 116842.452 158.81 232 453101.021 116855.383 159.26 233 453142.966 116946.352 158.39	Column 1 Column 2 Column 3 Column 3 Column 3 Bane Y 5000 610 X 1682.42 258.81 232 453104 250 11685.333 158.25 259.31 158.25 233 453142.966 116946.352 158.39 158.39

17

\delta LP360

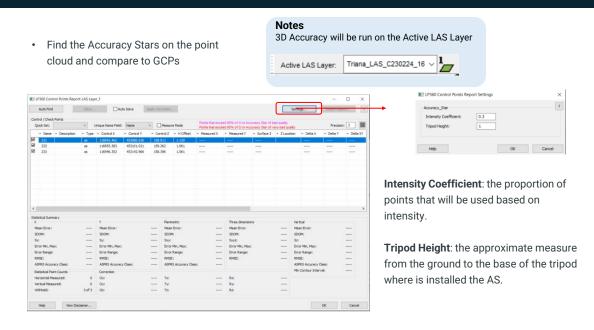
GCPs can be transformed during import if they are in a different CRS

- Projection/Vertical Change Only
 - Applies no datum transformation
- Transform from ITRF2014 Geographic Coordinates
- Generalized Transformation
 - Applies both datum and epoch transformations



& LP360

Step 1. Import Ground Control Points (from shp)


Control Points: AS_Huntsville_242 V	Shape	✓ Drive Mode:	ALL	~ K < > > 🖬 🎞
-------------------------------------	-------	---------------	-----	---------------

- Must be in the same CRS as your LAS
- Must contain an attribute field for the Height Offset, 'HOffset'
- Must contain an attribute field for the target type, 'Type'

Step 2. Auto Find

🔅 LP360

\delta **LP**360

- Calculate DX, DY, DXY, DZ, DXYZ
- Calculate statistics
- Generates comments on results of the Auto Find

Notes 3D accuracy w Active LAS Lay	vill be run on the ver	
Active LAS Layer:	Triana_LAS_C230224_16	~ l

												Export Re	
Control / Check Quick Set:	Points	✓ Unique !	lame Field: Nam	e ~	Measure Mod				Accuracy Star of t		ality.	Precisi	on: 3
	 Measured X 	 Measured Y 		* Z Location	→ Delta X	✓ Delta Y	→ Delta XY	→ Delta Z	✓ Delta XYZ	- Comm		 Reflectors Ide 	ntificati
1.129	116842.482	453080.644	158.845	Measured	-0.020	-0.014	0.025	-0.034	0.042	Reliable	Results	Very good	
1.061	116855.396	453101.045	159.298	Measured	-0.013	-0.024	0.027	-0.036	0.045	Reliable	Results	Very good	
1.051	116946.356	453142.978	158.420	Measured	-0.004	-0.012	0.012	-0.024	0.027	Reliable	Results	Very good	
										\sim			_
<													
Statistical Summ	ary	Y			Planimetric			Three dimen			Vertical		
Mean Error:			Error:	-0.017			0.021	Mean Error:	9015	0.038	Mean Error:		-0.031
SDOM:		0.004 SDO		0.003			0.004	SDOM:		0.005	SDOM:		0.003
Sx:		0.007 Sv:		0.005			0.007	Sxyz:		0.008	Sz:		0.005
Error Min, Mar	c [-0.020,		Min. Max:	[-0.024, -0.012]		fax:	[0.012. 0.027]	Error Min, M	ax: [0.02	7, 0.0451	Error Min, Max:	[-0.036,	
Error Range:	[0.020]		Range:	0.012			0.015	Error Range		0.018	Error Range:	[0.000)	0.012
RMSE:		0.014 RMS		0.018			0.022	RMSE:		0.039	RMSE:		0.031
ASPRS Accura	cy Class:	0.014		0.010	10000 1-0	, Cl	0.010				10000 100000		0.033
Statistical Poin	t Counts	Corre	ection								Min Contour Int	terval:	0.096
Horizontal Me	asured:	3 Ox:			Tx:			Rx:					
Vertical Measu	red:	3 Oy:			Ty:			Ry:					
Withheld:		0 of 3 Oz:			Tz:			Rz:					

\delta LP360

Comment (on noise & density)	Ref	flector Identification	on
Reliable ResultsNoise WarningNoise Alert	≥ 5 = 4	Very good	*
 Low Density Warning Low Density Alert Not Useable Not Enough Points Not Enough Detected Reflector Points 	= 3	Good Good	Average
	≤ 2	Very bad	

23

\delta LP360

Example with GCP transformed from US State Plane to UTM during import

 Results are identical to dataset without transformation

Auto Find	8	lve	Auto Solve	Apply Con	rection					Settings	667 () 	Export Re	sport	
introl / Check Poi						Points	that exceed f	10% of Clor Acc	racy Star of bad	quality				1
v H Offset	Y				Measure Mode				racy Star of very			Precisi		
 H Offset 	 Measured X 	 Measured Y 	+ Surface Z		→ Delta X	* Delta Y	 Delta XY 		 Delta XYZ 			Reflectors Ide	entification	
1.129	523871.970	3826766.607	158.845	Measured	-0.019	-0.013	0.023	-0.034	0.041	Reliable Resul		Very good		
1.061	523884.642	3826787.147	159.298	Measured	-0.012	-0.023	0.026	-0.036	0.044	Reliable Resul		Very good		
1.061	523975.076	3826830.113	158.420	Measured	-0.007	-0.014	0.016	-0.024	0.029	Reliable Resul	5	Very good		
	,													
		Y			Planimetric			Three dmension		Vertice				
Mean Error:	-0.	013 Mean Erro	n	-0.017	Mean Error:		0.022	Mean Error:		0.038 Mean	Error:		-0.031	
lean Error: DOM:	-0. 0.	013 Mean Erro 103 SDOM:	n	0.003	Mean Error: SDOM:		0.002	Mean Error: SDOM:		0.038 Mean 0.004 SDOM	Error:		0.003	
Mean Error: DOM: ix:	-0. 0. 0.	013 Mean Erro 103 SDOM: 105 Sy:		0.003 0.004	Mean Error: SDOM: Sxy:		0.002	Mean Error: SDOM: Sxyz:		0.038 Mean 0.004 SDOM 0.007 Sz:	Error: :		0.003	
Mean Error: DOM: ix:	-0. 0.	013 Mean Erro 103 SDOM: 105 Sy:		0.003	Mean Error: SDOM:	[0.014	0.002	Mean Error: SDOM:		0.038 Mean 0.004 SDOM 0.007 Sz:	Error:	[-0.036,	0.003 0.005 -0.024]	
Mean Error: IDOM: Ix: Error Min, Max:	-0. 0. 0. [-0.019, -0.0	Image: 1013 Mean Error 1013 SDOM: 1005 Sy: 107] Error Min, 1011 Error Rane	Max: [-0	0.003 0.004	Mean Error: SDOM: Sxy:	[0.014	0.002	Mean Error: SDOM: Sxyz:	(0.029, 0	0.038 Mean 0.004 SDOM 0.007 Sz: 0.044] Error I	Error: :	[-0.036,	0.003	
Mean Error: IDOM: Ix: Error Min, Max: Error Range:	-0. 0. [-0.019, -0.0 0.	013 Mean Erro 003 SDOM: 005 Sy: 07] Error Min,	Max: [-0	0.003 0.004 .023, -0.013]	Mean Error: SDOM: Sxy: Error Min, Max:	[0.014	0.002 0.004 5, 0.026]	Mean Error: SDOM: Sxyz: Error Min, Max:	(0.029, c	0.038 Mean 0.004 SDOM 0.007 Sz: 0.044] Error I	Error: : Min, Max: Rance:	[-0.036,	0.003 0.005 -0.024]	
lean Error: DOM: x: irror Min, Max: irror Range: MSE:	-0. 0. [-0.019, -0.0 0. 0.	Image: New York Mean Error 003 SDOM: 005 Sy: 007 Error Min, 011 Error Rame 013 RMSE:	Max: [-0	0.003 0.004 .023, -0.013] 0.010	Mean Error: SDOM: Sxy: Error Min, Max: Error Range:		0.002 0.004 5, 0.026] 0.010	Mean Error: SDOM: Sxyz: Error Min, Max: Error Range:	(0.029, c	0.038 Mean 0.004 SDOM 0.007 Sz: 0.044] Error 1 0.016 Error 1 0.039 RMSE	Error: : Min, Max: Rance:		0.003 0.005 -0.024] 0.012	
tistical Summary Aean Error: DDM: ixo: ixor Min, Max: ixor Min, Max: ixor Sings: Listical Point C	-0. 0. [-0.019, -0.0 0. Class: 0.	Image: New York Mean Error 003 SDOM: 005 Sy: 007 Error Min, 011 Error Rame 013 RMSE:	Max: [-0 be: curacy Class:	0.003 0.004 .023, -0.013] 0.010 0.018	Mean Error: SDOM: Sxy: Error Min, Max: Error Range: RMSE:		0.002 0.004 5, 0.026] 0.010 0.022	Mean Error: SDOM: Sxyz: Error Min, Max: Error Range:	(0.029, c	0.038 Mean 0.004 SDOM 0.007 Sz: 0.044] Error 1 0.016 Error 1 0.039 RMSE	Error: : Min, Max: Rance:	Class:	0.003 0.005 -0.024] 0.012 0.031	
Mean Error: IDOM: Ix: Irror Min, Max: Irror Range: IMSE: ISPRS Accuracy	-0. 0. [-0.019, -0.0 0. Cless: 0. Cunts	Image: 1013 Mean Error 003 SDOM: 005 Sy: 007] Error Min, 011 Error Rame 013 RMSE: 014 ASPRS Ac	Max: [-0 be: curacy Class:	0.003 0.004 .023, -0.013] 0.010 0.018	Mean Error: SDOM: Sxy: Error Min, Max: Error Range: RMSE:		0.002 0.004 5, 0.026] 0.010 0.022	Mean Error: SDOM: Sxyz: Error Min, Max: Error Range:	(0.029, c	0.038 Mean 0.004 SDOM 0.007 Sz: 0.044] Error 1 0.016 Error 1 0.039 RMSE	Error: : Min, Max: Rance: : :	Class:	0.003 0.005 -0.024) 0.012 0.031 0.032	
fean Error: IDOM: Ix: Irror Min, Max: Irror Range: IMSE: ISPRS Accuracy Itatistical Point C	-0. 0. [-0.019, -0. 0. Class: 0. Counts .red:	013 Mean Error 003 SDOM 005 Sy: 007] Error Min, 013 RMSE: 014 ASPRS Ac Correction Correction	Max: [-0 be: curacy Class:	0.003 0.004 .023, -0.013] 0.010 0.018	Mean Error: SDOM: Sxy: Error Min, Max: Error Range: RMSE: ASPRS Accurac		0.002 0.004 5, 0.026] 0.010 0.022	Mean Error: SDOM: Sxy2: Error Min, Max: Error Range: RMSE:	(0.029, c	0.038 Mean 0.004 SDOM 0.007 Sz: 0.044] Error 1 0.016 Error 1 0.039 RMSE	Error: : Min, Max: Rance: : :	Class:	0.003 0.005 -0.024) 0.012 0.031 0.032	

Step 3. Solve

🔅 LP360

🔅 LP360

- Calculates translation
- Calculates rotation (if at least 3 AS)
- Auto Solve will automatically recalculate if you check/uncheck GCP in the list

Auto Find		Solve	Auto	Solve Apply C	orrection						Settings	Export	Report	
utrol / Check	Points	 Uniq 	ue Name Field:	Name v	Measure Mode				couracy Star of t couracy Star of v		sity	Prec	ision: 3	1
H Offset	* Measured X	* Measure	d Y + Surfa	e Z + Z Location	* Delta X	• Delta Y	* Delta XY	→ Delta Z	+ Delta XYZ	* Comme	nts	* Reflectors I	Identification	n
1.129	116842.482	453080.6	44 158.84	5. Measured	-0.020	-0.014	0.025	-0.034	0.042	Reliable	Results	Very good		
1.061	116855.396	453101.0			-0.013	-0.024	0.027	-0.036	0.045	Reliable		Very good		
1.061	116946.356	453142.9	78 158.42) Measured	-0.004	-0.012	0.012	-0.024	0.027	Reliable	Results	Very good		
				LP360 Control Po	nte Report Apph	Correction	3		×					
				LAS Laver: Triana										
				Ox: 116881	411	Tx: -	0.012	Rx:	-0.013					
				Oy: 453108	222	Ty: -	0.017	Ry:	-0.013					
				Oz: 158	.854	Tz: -	0.031	Rz:	-0.001	-				
tistical Summ	ary								_					
lean Error:		-0.012 N	lean Error:			_		_		0.038	Vertical Mean Error:		-0.031	
DOM:			DOM:				Apply Correction	in	Cancel	0.005	SDOM:		0.003	
a:			iv:	0.005	Sxy:		0.007	Sxyz:		0.008	Sz		0.005	
ror Min, Mar	x: [-0.020, ·		rror Min. Max:	[-0.024, -0.012]	Error Min, Ma	c 1	0.012, 0.027]	Error Min. M	ax: [0.02	7, 0.045]	Error Min, Max	: [-0.03	6, -0.024]	
ror Range:			irror Range:	0.012	Error Range:		0.015	Error Range		0.018	Error Range:		0.012	
HSE:		0.014 R	UMSE:	0.018	RMSE:		0.022	RMSE:		0.039	RMSE:		0.031	
SPRS Accura	acy Class:	0.014 A	SPRS Accuracy C	lass: 0.018	ASPRS Accura	cy Class:	0.018				ASPRS Accura	cy Class:	0.032	
tatistical Poir	nt Counts	c	Correction								Min Contour In	iterval:	0.096	
orizontal Me	asured:	3 0	Dx:	116881.411	Txt		-0.012	Rx:		-0.013				
ertical Measu	ured:	3 0	Dy:	453108.222	Ty:		-0.017	Ry:		-0.013				
Withheld:		0 of 3 C	Dz:	158.854	Te		-0.031	Rz		-0.001				

Notes

If the translation is combined to a rotation, the rotation is defined from an origin point (Ox, Oy, Oz). Therefore, the translation is also relative to this origin point.

25

Step 4. Apply correction

 Apply correction will apply the translation and rotation on the point cloud and create a new LAS layer.

Auto Find		Solve		Auto Sc	live Apply Co	rection						Settings	Export R	eport	
ntrol / Check Quick Set:	Points	~ U	nique Nam	e Field: N	ame v	Measure Mod				Accuracy Star of b		sity	Precis	ion: 3	
H Offset	* Measured X	- Meas	ured Y	* Surface	Z = Z Location	* Deita X	▼ Delta Y	· Delta XY	- Delta Z	* Delta XYZ	* Comme	ints	* Reflectors Id	entification	
1.129	116842.482	45308	0.644	158.845	Measured	-0.020	-0.014	0.025	-0.034	0.042	Reliable Results		Very good		
1.061 1.061	116855.396 116946.356	45310 45314		159.298 158.420	Measured Measured	-0.013 -0.004	-0.024 -0.012	0.027	-0.036 -0.024	0.045 0.027	Reliable Reliable		Very good Very good		
				ſ	LP360 Control Poin	ts Report App	ply Correction	ő		×					
SDOM: 0.0		-0.012			Ox: 116881.4 Oy: 453108.2 Oz: 158.8	22	Ту: н	Apply Correctio	Rx: Ry: Rz:	-0.013 -0.013 -0.001	0.038	Vertical Mean Error: SDOM:		-0.031	
ix: Error Min, Mao Error Range: RMSE: ASPR5 Accura		0.007 0.004] 0.016 0.014 0.014	Sy: Error Mir Error Ra RMSE: ASPRS A		0.005 [-0.024, -0.012] 0.012 0.018 ss: 0.018	Sxy: Error Min, N Error Range RMSE: ASPRS Acc		0.007 0.012, 0.027] 0.015 0.022 0.018	Sxyz: Error Min, M Error Range RMSE:		0.008 7, 0.045] 0.018 0.039	Sz: Error Min, Mao Error Range: RMSE: ASPRS Accura		0.005 -0.024] 0.012 0.031 0.032	
itatistical Poin Iorizontal Mei Vertical Measu	asured:	3	Correctio Ox: Oy:	'n	116881.411 453108.222	Tx: Ty:		-0.012	Rx: Ry:		-0.013 -0.013	Min Contour In	nterval:	0.096	
Withheld:		0 of 3	Oz:		158.854	Tz:		-0.031	Rz:		-0.001				

Step 5. Verification

	LP360 Control	Points Report: I	AS Laye	c1										- 0	
	Auto Find		Solve		Auto Solve	Apply Cor	rection						Settings	Export Report	
	Control / Check Poir					10000000000									
Run Auto Find on the new	Quick Set:		v u	Inique Name Fie	ld: Name	· · ·]Measure Mode			90% of Clor Act			ity'	Precision: 3	j
	+ H Offset	Measured X	→ Mea	asured Y 👻	Surface Z	- Z Location	- Delta X	- Delta Y	· Delta XY		* Deita XYZ	-		Reflectors Identification	ä
LAS layer	1.129	116842.472	4530	80.627	158.809	Measured	-0.010	0.003	0.010	0.002	0.010	Reliable	Results	/ery good	
	1.061	116855.386			159.260	Measured	-0.003	-0.007	0.008	0.002	0.008			/ery good	
	1.061	116946.347	4531	42.960	158.394	Measured	0.005	0.006	0.008	0.002	0.009	Reliable	Results	/ery good	
•															
Step 4	Apply	correc	tion	n											
	<				_										ļ
	Statistical Summary X			Y			Planimetric			Three dimensio	w		Vertical		
	Mean Error:		-0.002	Mean Error:		0.001	Mean Error:		0.009	Mean Error:	7	0.009	Mean Error:	0.002	
	SDOM:		0.004	SDOM:		0.003	SDOM:		0.001	SDOM:		0.001	SDOM:	0.000	
	Sx:		0.006	Sy:		0.006	Sxy:		0.001	Sxyz:		0.001	5z:	0.000	
	Error Min, Max: Error Range:	[-0.010,	0.005]	Error Min, Ma Error Range:		[-0.007, 0.006]	Error Min, Ma Error Range:	ix: [0	0.003, 0.010]	Error Min, Max: Error Range:	[0.008,	0.010]	Error Min, Max: Error Range:	[0.002, 0.002]	
	RMSE:		0.007	RMSE:		0.004	RMSE:		0.002	RMSE:		0.002	RMSE:	0.002	1
	ASPRS Accuracy	Class:	0.007	ASPRS Accur	acy Class:	0.006	ASPRS Accur	acy Class:	0.007				ASPRS Accuracy		1
	Statistical Point C	ounts		Correction									Min Contour Inte	rval: 0.009	
	Horizontal Measu	red:	3	Ox:			Tx:			Rx:					
	Vertical Measured	l:	3	Oy:			Тут			Ry:		*****			

27

\delta LP360

\delta LP360

Additional workflow

You can also mix Accuracy Stars with checkerboards by manually selecting the checkerboard's planimetric center in the point cloud using Measure Mode.

	Auto Find		Solve	C Ad	n Solve	Apply Corre	chon				9	ttings	Export Rep	ort	
	rol / Check áck Set:	Points	.v .	Inique Name Field:	Name	~ (PM	easure Mode		d 90% of Cilor Acc d 95% of Cilor Acc				Precisio	n: 3	1
	v Name	· Description	- Type	- Control X	* Control Y	- Contr	H Offset		· Measured Y	* Surface Z	and the second designed		+ Delta Y	- Del	ta 1
в	126		SN	116957.875	453140.909	158, 16				158.163	Control				
a i	127		SN	116975.944	453155.460	158.26				158.276	Control				
2	128		SN	117001-887	453158.652	158.20				158.211	Control				
1	130		et	116839.162	453097.825	159.47				159,452	Control	_		_	•
8	131		c2	116875.032	453076.304	157.94	0.000			157.942	Control				
8	132		c3	116954.276	453141.060	158.27	8 0.000			158.285	Control				
8	229		AS	116875.495	453052.682	156.92	4 1.036	116875.450	453052.687	156.932	Measured	0.045	-0.005	0.04	5
8	230		AS	116837.664	453060.834	158.19	0 1.011	116837.651	453060.810	158.177	Measured	0.013	0.024	0.02	7
3	231		AS	116842.462	453080.630	158.81	1 2.155	116842.472	453080.627	157.782	Measured	-0.010	0.003	0.01	0
3	232		AS	116855.383	453101.021	159.26	2 1.055	116855.386	453101.028	159.266	Measured	-0.003	-0.007	0.00	8
8	233		AS	116946.352	453142.966	158.39	6 1.050	116946.347	453142.960	158.404	Measured	0.005	0.006	0.00	8
2	234		AS	116828.425	453133.288	160.31	5 1.045	116828.415	453133.274	160.296	Measured	0.010	0.014	0.01	7
															>
tati X	stical Summ	sary		v			Planimetric		Three dimension			(ertical			
	en Error:		0.010	Mean Error:			Mean Error:	0.019	Mean Error:	ns.		Vertical Mean Error:		0.031	
	OM:		0.007	SDOM:			SDOM:	0.005	SDOM:			SDOM:		0.027	
Sx			0.017	Sy:			Skyt	0.013	Sxyz:			52:		0.165	
	or Min, Ma	ю: [-0.0	10, 0.045]	Error Min, Max:	[-0.007,		Error Min, Max:	[0.008, 0.045]	Error Min, Max:	[0.00		Error Min, Max:	[-0.036,		
	or Range:		0.055	Error Range:			Error Range:	0.037	Error Range:			Error Range:		1.065	
	ISE:		0.020	RMSE:			RMSE:	0.023	RMSE:			RMSE		0.168	
AS	PRS Accur	acy Class:	0.020	ASPRS Accuracy	Class:	0.013	ASPRS Accuracy Class	: 0.020				ASPRS Accuracy C		0.158	
Sta	stistical Poi	nt Counts		Correction								Min Contour Interv	wi:	0.504	
Ho	rizontal Me	asured:	6	Osc			Tx:		Rx:						
Ve	rtical Meas	ured:	38	Oys			Ty:		Ry:						
W	theid:		33 of 39	Oz:		Series V.	Te		Rz:		-				